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The Grothendieck property

Definition
A Banach space X has the Grothendieck property, if every
weak*-convergent sequence in X∗ is weakly convergent.

Examples:
reflexive Banach spaces
`∞

C(St(B)), where B is a complete Boolean algebra

Definition
A Boolean algebra B has the Grothendieck property, if C(St(B)) has the
Grothendieck property.
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Measures on Boolean algebras

measure on B = finitely additive real-valued bounded function on B

B St(B) C(St(B)) C∗(St(B))

MRadon(St(B))
=

Radon measures on St(B)

M(B)

Measures on B

Folklore
Every measure on B uniquely extends to a Radon measure on St(B)
The restriction of a Radon measure on St(B) to the clopen sets is a
measure on B
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Measures on Boolean algebras

(ν)n∈N on B is pointwise convergent if there exist a measure ν on B
such that

∀A∈B νn(A) → ν(A)

Variation of a measure ν on B

|ν|(X) = sup{|ν(A)|+ |ν(B)| : A,B ∈ B;A,B ⊂ X ;A ∩ B = ∅}

Norm of a measure ν on B

||ν|| = |ν|(1)
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The Nikodym property

Definition
We say that a Boolean algebra B has the Nikodym property, if every
pointwise convergent sequence (νn)n∈N of measures on B is bounded in
norm (i.e. supn∈N ‖νn‖ < ∞).

Theorem (Andô)
Complete Boolean algebras have the Nikodym property.
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More examples

σ − complete
algebras

P(N)

Algebras with the Grothendieck propertyAlgebras with the Nikodym property

J
T
Exists under CHSCP

algebras

σ- complete algebras have both the Nikodym and Grothendieck
properties
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More examples

σ − complete
algebras

P(N)

Algebras with the Grothendieck propertyAlgebras with the Nikodym property

J
T
Exists under CHSCP

algebras

Clop(C)

σ- complete algebras have both the Nikodym and Grothendieck properties
Schachermayer (1982): the Boolean algebra J of Jordan measurable subsets of
[0, 1] has the Nikodym property, but not the Grothendieck property
Talagrand (1984): Assuming CH there is a Boolean algebra T with the
Grothendieck property and without the Nikodym property

The algebra Clop(C) of all clopen subsets of the Cantor set does not
have neither the Nikodym property nor the Grothendieck property
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Grothendieck vs Nikodym under ¬CH

Open question
Is there (in ZFC) a Boolean algebra with the Grothendieck property and
without the Nikodym property?

Theorem (Głodkowski & W.)
The existence of a Boolean algebra with the Grothendieck property and
without the Nikodym property is consistent with c > ω1.
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Notation

Clop(C)

The algebra Clop(C) of all clopen subsets of the Cantor set does not have
the Nikodym property.

To show it we need some notions:
Cantor set: C = {−1, 1}N

Bor(C) = the Borel subsets of C
Clop(C) = the clopen subsets of C
λ = the standard product probability measure on Bor(C)
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Notation

For n ∈ N we put δn : C → {−1, 1}, δn(x) = xn (the n-th coordinate of x)
and we define a measure ϕn on Bor(C) by

ϕn(A) =
∫

A
δndλ

n′th level

−1 1
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Clopen sets

Example
Clop(C) does not have the Nikodym property.

A witness for the lack of the Nikodym property for Clop(C) is as follows:

µn(A) = n · ϕn(A) = n ·
∫

A
δndλ

(µn) is poinwise convergent to zero.
(µn) is not bounded in norm
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Balanced algebras

Let m ∈ N and ε > 0. We say that A ∈ Bor(C) = Bor({−1, 1}ω) is
(m, ε)-balanced, if for every s ∈ {−1, 1}m we have

λ(A∩〈s〉)
λ(〈s〉) < ε

m or λ(〈s〉\A)
λ(〈s〉) < ε

m ,

where 〈s〉 = {x ∈ C : x � m = s}

m-th level

∀r > m |ϕr (A)| < ε
r

for every r > m

−1 1

r -th level for r > m
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Balanced algebras

Let m ∈ N and ε > 0. A set A is (m, ε)-balanced, if for every
s ∈ {−1, 1}m

λ(A∩〈s〉)
λ(〈s〉) < ε

m or λ(〈s〉\A)
λ(〈s〉) < ε

m ,

∀r > m |ϕr (A)| < ε
r , for every r > m

A finite family A of Borel sets is (m, ε)-balanced if each A ∈ A is
(m, ε)-balanced.

We say that a Boolean algebra B ⊆ Bor(C) is balanced if for every
finite family A ⊆ B and ε > 0 there is m ∈ N such that A is
(m, ε)-balanced.

First observation
Clop(C) is balanced.
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Examples

Second observation
There exists a balanced set which is not clopen
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Example

Third observation
If B ⊆ Bor(C) is balanced, then it does not have the Nikodym property.

To see that take µn = nϕn. The sequence (µn)n∈N is pointwise convergent
to 0, but ‖µn‖ = n for every n ∈ N
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Extensions of countable balanced algebras

Let B ⊆ Bor(C) be a countable balanced Boolean algebra. Suppose that
(Bn)n∈N is an increasing sequence of finite Boolean algebras such that⋃

n∈N
Bn = B

(mn)n∈N is a strictly increasing sequence of natural numbers
(εn)n∈N is a sequence of positive numbers converging to 0

(Gn)n∈N ⊆ B is a sequence of pairwise disjoint sets
and

∀k ∈ N ∀n 6 k F
(
Bn,

⋃
i6k

Gi
)
is (mn, εn)-balanced

Then F(B,
⋃

n∈N Gi) is balanced.
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Keeping balance

Theorem (simplified version)
Let B ⊆ Bor(C) be a balanced algebra, m ∈ N, ε > 0. Suppose that

G ∈ B is (m, ε)-balanced

G

Destroyer

Then there is θ > 0 such that
for every L ∈ B such that λ(L) < θ

there is a “very small” set M ∈ B such that
G ∪ L ∪ M is (m, ε)-balanced

and
L ∩ M = ∅
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Keeping balance

Theorem (full version)
Let k ∈ N, η > 0. Let (mn)n6k be an increasing sequence of natural
numbers. Let B∗ ⊆ B ⊆ Bor(C) be balanced Boolean algebras and assume
that Clop(C) ⊆ B∗. Let (Bn)n6k ⊆ B be finite subalgebras. Suppose that
G,P ∈ B∗ and the following are satisfied:

G ⊆ P ,
∀n 6 k F(Bn,G) is (mn, 2

−n)-balanced.
Then there is θ > 0 such that for every L,Q ∈ B∗ satisfying

max{λ(L), λ(Q)} < θ,
L ∩ P = ∅,

there is M ∈ B∗ such that
M ∩ (P ∪ Q) = ∅,
λ(M) < η,
∀n 6 k F(Bn,G ∪ L ∪ M) is (mn, 2

−n)-balanced.
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